Learning from Label Preferences
نویسندگان
چکیده
In this paper, we review the framework of learning (from) label preferences, a particular instance of preference learning. Following an introduction to the learning setting, we particularly focus on our own work, which addresses this problem via the learning by pairwise comparison paradigm. From a machine learning point of view, learning by pairwise comparison is especially appealing as it decomposes a possibly complex prediction problem into a certain number of learning problems of the simplest type, namely binary classification. We also discuss how a number of common machine learning tasks, such as multi-label classification, hierarchical classification or ordinal classification, may be addressed within the framework of learning from label preferences. We also briefly address theoretical questions as well as algorithmic and complexity issues. Preference learning is a recent addition to the suite of learning tasks in machine learning [1], where the training information is typically not given in the form of scalar outputs, but instead in the form of pairwise comparisons expressing preferences between different objects. One can distinguish learning from object preferences, where the training data is given in the form of pairwise comparisons between objects, and learning from label preferences, where the training data is given in the form of pairwise comparisons between labels that are attached to the objects. In the former case, a common performance task is to rank a new set of objects (object ranking), whereas in the latter case, the performance task is to rank the set of labels for a new object (label ranking). Besides, the training information may also be given in the form of (ordinal) preference degrees attached to the objects, indicating an absolute (as opposed to a relative/comparative) assessment. If the task is to rank a new set of objects according to their preference degrees, we also speak of instance ranking. In this talk, we focus on the task of label ranking, and, in particular, on our own work in this area, which concentrates on learning a set of pairwise comparators (LPC) [2].
منابع مشابه
High-School Students’ Dominant Learning Styles Preferences in Learning English: How are “Good Language Learners” Different from the Ordinary Ones?
Many researchers have investigated different aspects of learning styles. Nevertheless, few studies have considered interactions between the notions of learning styles and “good language learners’” achievement. The present study aimed at exploring dominant learning style preferences by senior high-school students and comparing their preferences with those by “good language learners”. To this goa...
متن کاملLearning Style Preferences in Male and Female Professional Translators
This study investigated learning style preferences among professional translators. The purposes of the study were to (a) find the prevailing learning style among the Iranian professional translators; (b) reveal any significant difference in the translators’ learning style preferences in terms of gender; and (c) find any significant difference between individual learning style and translation co...
متن کاملAn Effective Approach for Robust Metric Learning in the Presence of Label Noise
Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...
متن کاملLabel Ranking by Learning Pairwise Preferences Label Ranking by Learning Pairwise Preferences
Preference learning is a challenging problem that involves the prediction of complex structures, such as weak or partial order relations. In the recent literature, the problem appears in many different guises, which we will first put into a coherent framework. This work then focuses on a particular learning scenario called label ranking, where the problem is to learn a mapping from instances to...
متن کاملPerceptual Learning Style Preferences and Computer-Assisted Writing Achievement within the Activity Theory Framework
Learning styles are considered among the significant factors that aid instructors in deciding how well their students learn a second or foreign language (Oxford, 2003). Although this issue has been accepted broadly in educational psychology,further research is required to examine the relationship between learning styles and language learning skills. Thus, the present study was carried out to in...
متن کامل